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were obtained for d8 and solved. Determinants for the 
quartet d7 states are obtained by reversing the signs of 
all diagonal elements in the triplet determinants. 
Energy-level diagrams for d7 and ds with different 
A1/A2 values have been constructed using Az/B as a 
variable and C = 4B. Diagrams of this type are shown 
in Figure 10. Calculations were also performed for the 
d* case with 0” 6 8 6 60” using a constant cy value of 
77” inasmuch as the available structural data (Table I) 

do not indicate a large variation of this angle with 4. 
A procedure similar to that for the 4 = 0” case was 
used with appropriate values of angular coordinates in 
eq 12-14. Calculations were carried out with e, = 
3B-6BI e,, = eTO = 0 ,  and with e, = 4B, e,, = 
0.2e,, ew0 = 0 ;  in all cases C = 4B. One such energy- 
level diagram is given in Figure 11 and illustrates the 
usual order of triplet states for a given 4 over the range 
of parameterization. 
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In a previous paper, classes of symmetry equivalent permutational isomerization reactions were defined and exhaustively 
enumerated for symmetric molecules with identical substituents.’ In the present paper this treatment is extended t o  mole- 
cules whose substituents are not necessarily identical. The generalized treatment is used to enumerate all distinct permuta- 
tional isomerization reactions of molecules MH,P4, n = 1, 2 ,  3, or 4, where M is a transition metal, H is a hydride ligand, 
and P is a trisubstituted phosphorus ligand. The importance of these results for the interpretation of temperature-de- 
pendent nmr line-shape behavior is stressed. 

It will 
reader is 
tion of 

I. Introduction 
be assumed throughout this paper that the 
familiar with the author’s paper, “Enumera- 
Permutational Isomerization Reactions”l 

(EPIR-I). In  EPIR-I, classes of symmetry equivalent 
permutational isomerization reactions are defined, as- 
suming that all ligands which are permuted are iden- 
tical. All permutational isomers of a given molecule 
must have in common the same molecular skeleton. 
If all the ligands are not identical, then the permutation 
of two nonidentical ligands may lead to a change in 
molecular geometry and therefore a change in the mole- 
cular skeleton. Such a permutation would not define 
a permutational isomerization reaction. In the case 
of molecules of the type MH,P4 (see Figure l), the P 
ligands and H ligands are clearly not identical and the 
methods of EPIR-I become chemically meaningless. 

In  the following section, the concepts defined in 
EPIR-I will be generalized to allow enumeration of the 
permutational isomerization reactions of molecules with 
sets of nonidentical ligands. These concepts will then 
be used to treat molecules of the type MH,PI. 

11. Generalized Definitions 
A. The Group of Allowed Permutations.-As in 

EPIR-I, permutational isomers3 are defined as “chemi- 
cal compounds which have in common the same molecu- 
lar skeleton and set of ligands, differing only by the 
distribution of ligands on the skeletal positions.” The 
set of indexed unidentate ligand labels L = 11, 1 2 ,  . . . , 
l,] and the set of indexed skeletal position labels 

(1) Part I: 
(2) National Science Foundation Predoctoral Fellow. 

W. G. Klemperer, J. Chem. Phys., 56, 5478 (1972). 
Present address: 
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77843. 
(3) I. Ugi, D. Marquarding, H. Klusacek, G. Gokel, and P .  Gillespie, 

Angew. Chem.,  82,741 (1970); Angev .  Chem., 1st. E d .  E n d . ,  9,703 (1970). 

x s  = {sr, s2, . . . , s,) are combined to form a 2 X n 
matrix (t). Thus 

lists the ligand indices in the top row and below each 
ligand index is placed the index of the skeletal position 
which that ligand occupies. A permutational isomeri- 
zation reaction is described by a permutation p I which 
acts on the indices of the skeletal positions. The set 
of all permutations which describe permutational 
isomerization reactions and/or point group operations 
forms a group called the group of allowed permutations. 

In EPIR-I i t  is assumed that all n ligands are iden- 
tical and therefore any one of the n !  permutations in 
the symmetric group S, is an allowed permutation. If 
all n ligands are not identical, then some elements in 
S, do not represent permutational isomerization re- 
actions and the group of allowed permutations must be 
a subgroup of S,. Consider, for example, the isomers 
shown in Figure 2. The permutation p = (1) (2) (3) (4)- 
(56) will convert isomer a into isomer b if skeletal 
positions are indexed as in Figure 1. Since a and b are 
permutational isomers, p represents a permutational 
isomerization reaction; i .e.,  p a  is an allowed permuta- 
tion. The permutation 4 %  = (1)(25)(3)(4)(6) converts 
isomer a into isomer c. Since a and c are polytopal 
isomers4 but not permutational isomers, 4 %  does not 
represent a permutational isomerization reaction ; ;.e., 
p i  is not an allowed permutation. As defined above, 
permutational isomers must have in common the same 
molecular skeleton. Isomers a and c clearly do not: 
a has a CZ, molecular skeleton, while c has a Ddh molecu- 
lar skeleton. 

(4) E. L. Muetterties, J. Ameu. Chem. Soc., 91, 1636 (1969) 
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These considerations show that the group of allowed 
permutations consists of those permutations which 
permute skeletal positions that are occupied by identical 
ligands. This subgroup of S, may be defined precisely. 
If the molecule in question has m different types of 
ligands, x s  is partitioned into m subsets such that the 
skeletal positions in each subset are occupied by 
identical ligands. For a molecule of type MHzPd (see 
Figure 1) m = 2 and x s  = {SI, SZ, SS, s4, s5, sg}. x s  is 
partitioned into two subsets xsp = {SI, s2, 3-3, sq} and 
xsH = i s h ,  so). Since an allowed permutation may 
permute any elements within xsp and/or any elements 
within xsH, there exist 4 ! 2 ! allowed permutations. This 
group of permutations is defined as Sq 4- SZ, the direct 
sum5 of the symmetric groups S4 and SZ. In general, if 
a molecule has m different types of ligands and n ,  
ligands of type i, then the group of allowed permuta- 
tions is Z+=lmSn,, where the summation implies direct 
sums. 

Distinguishable and differentiable permutational 
isomerization reactions are defined as in EPIR-I, 
keeping in mind that the group of allowed permutations 
is in general ZI;ImSna, not S,. In  the remainder of this 
section, formulas for counting these reactions will be 
provided. Lest he become suspicious of the purely 
mathematical nature of these definitions, the reader 
should keep in mind the usefulness of the definitions in 
solving chemical problems. As will be demonstrated in 
the following section, knowledge of the number of re- 
actions differentiable in a totally symmetric environ'- 
ment is essential for the interpretation of temperature- 
dependent nmr spectra. Reactions which are formally 
nondifferentiable in a chiral environment must generate 
identical topological representations, as demonstrated 
elsewhere.6 Sets of reactions distinguishable in a chiral 
or totally symmetric environment are physically 
meaningful only when a molecule is fixed in a symmetric 
environment, but these sets are in addition of help in 
generating sets of differentiable reactions. They are 
also helpful in relating isomerization mechanisms to 
isomerization reactions 

B. Enumeration Procedures.-Formulas for enu- 
merating reactions may not be taken directly from 
EPIR-I because the problem of counting conjugacy 
classes or double cosets is more involved in Za=l"Sfl, 
than in S,. Before addressing this problem, the concept 
of cyclic index used in EPIR-I must be generalized. 
In  order to minimize notational complexities, only the 
case of m = 2 is discussed here. Extension of all defini- 
tions and theorems to the case of an arbitrary m is 
evident and will be omitted. 

If a permutation group H acts on the union of two 
disjoint sets xsl and xs2 such that every haeH permutes 
only elements of xsl among themselves and elements of 
xs2  among themselves, then the generalized cyclic type of 
h,eH is defined by the array ( j l ,  5 2 ,  

k,,), where the permutation h, contains j ,  cycles of 
length i which permute elements in xsl and kc cycles 
of length I which permute elements in is2. For example, 
if SS acts on { l ,  2, 31, S4 acts on 14, 5, 6, 71 and H = 
S3 + Sq, then the generalized cyclic type of h, = 

(12)(3)(4)(567) is (1, 1, 0;  1, 0, 1, 0). 
If two permutational isomerization reactions are 

( 5 )  For a rigorous definition of this operation, see ref 1. 
(6) W. G. Klemperer, J .  Amer. Chem. Soc., 94,6940 (1972). 
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Figure 1.-Molecules of the type MH,Pd, n = 1, 2, 3, and 4, 
where H is a hydride ligand, M is a transition metal, and P is a 
trisubstituted unidentate phosphorus ligand. G is the molecular 
point group, R is the group of proper rotation operations in G, and 
H is the group of allowed permutations. 
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Figure 2.-Three isomers of the type MHzP4. 

formally indistinguishable in a chiral or totally sym- 
metric environment, then they must be of identical 
generalized cyclic type. Accordingly, eq 1 defines the 
isomerization counting polynomial FI which counts, 
with respect to generalized cyclic type, the number of 
distinguishable permutational isomerization reactions 
in a totally symmetric environment. 
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Here, G is the permutation group generated by the 
molecular point group acting on the indices of the 
skeletal positions, nl and n2 are the number of skeletal 
positions occupied by ligands of type 1 and type 2 ,  
respectively, and the summation extends over all 
generalized cyclic types found in S,, + S,,. Each 
coefficient A ’ l l j , . .  .j,l , k l k 2 . .  .knZ is the number of distinguish- 
able permutational isomerization reactions in a totally 
symmetric environment of generalized type ( j l ,  j z ,  . . . , 
j n l ;  k l ,  kz, . . . , k,J.  The ai’s and bi’s are variables 
which allow identification of the coefficients. Note that 
if nl = n and n2 = 0, then eq 1 reduces to eq 3 in 

The isomerization counting polynomial FI may be 
derived from a polynomial F which counts the number 
of conjugacy classes in the group of allowed permuta- 
tions with respect to G. This polynomial, defined in 
eq 2, has the same general form as F I .  A 3 , j , , . . j ~ l , k , k z . . . k ~ ~  

F(G;  ai, a, . . . ,  a,,; bi ,  6 2 ,  . . . ,  b n J  E 

EPIR-I. 

c A 3 i i % .  * a 3n:lklkz . . . kn, x 

al%$” . . a , , j n l b l k l b z k z  

is the number of conjugacy classes of generalized cyclic 
type ( j 1 ,  j z ,  . . . , jnl; k l ,  kz ,  . . . k,J in S,, + S,, with 
respect to G. 

The polynomial Y ,  defined in eq 3, is needed to 
relate FI and F. The general form of this polynomial 

Y(G; UI, ~ 2 ,  . . . , a,,; bl ,  bz, . . . , bn,) E 

c Cjij, kikz...knz x 
j d , .  . , ,h,; k l , k z , .  . . ,knz 

a13”a2 j2 .  . . a m 3 ” l b l k l b 2 k n .  . . b,$z (3) 

is similar to that of F and F I .  Here Cjlj 2 . . . j n l , k 1 k Z . . . k n p ,  

however, is the number of conjugacy classes of general- 
ized cyclic type ( j l ,  jz, . . . , j n 1 ;  k l ,  kz ,  . . . > k,J in G con- 
taining permutations generated by proper rotations. 

The relationship among the polynomials F,, F, and Y 
is given in eq 4. Equation A3, given in the Appendix, 

, a n , ;  b l ,  bz, ’ ‘ ’, bm) = 

F(G;  ~ 1 ,  ~ 2 ,  . . , , a n l ;  bl,  bz, . . , , bnz) - 

Y(G; ai, az, . . ., a n l ;  b i ,  b 2 ,  . . . ,  b,,) (4) 

is used to calculate F(G;  al ,  az, . . . , an>; b l ,  bz, . . . , b,J. 
Y (G;  al, ~2~ . . . , aril; b l ,  b 2 ,  . . . , b,J may be calculated 
using information found in standard group character 
tables. 

If instead of a totally symmetric environment we 
consider permutational isomerization reactions dis- 
tinguishable in a chiral environment, eq 4 changes only 
insofar as G is replaced by R, where R is the permuta- 
tion group consisting of all operations in G which are 
generated by proper rotations. Equation 5 allows 
calculation of the appropriate counting polynomial for 
reactions distinguishable in a chiral environment. 

FI(R; al, az, . . . , an,; bl ,  bz, 
F(R; al, az, . . . , an , ;  bl ,  bz, . . . , bnz)  - 

Y(R; al, az, . . . , a n l ;  b ~ ,  bi, . . ., b n 2 )  ( 5 )  
We now turn our attention from permutational 

isomerization reactions that are distinguishable to those 

that are formally differentiable. As in EPIR-I the 
number of permutational isomerization reactions dif- 
ferentiable in a chiral environment is designated D’R. 
If DR is the number of double cosets generated by R in 
Snl 4- S,,, then D’R = DR - 1. Equation A8 is used 
to calculate DR. In a totally symmetric environment, 
D’G is the number of formally differentiable reactions. 
DG is the number of double cosets generated by G in 
S,, + S,,. If G contains improper rotations, then 
D‘G = DG. If G contains no improper rotations, then 
D‘G = DG - 1. DG may be calculated using eq A8. 

111. Examples 
The definitions given above and the theorems given 

in the Appendix will now be used to treat nonrigid 
molecules of the type MH,Pd shown in Figure 1. 
Certain molecules of this type may undergo permuta- 
tional isomerization via intermediate polytopal con- 
figurations having conne~tivities~ greater than two. 
In this case a “linear  omb bin at ion"^ of certain formally 
differentiable permutational isomerization reactions 
may be needed to characterize the rearrangement. In 
this section, only those mechanisms will be considered 
which involve intermediate configurations having con- 
nectivities equal to two. Thus only one permutational 
isomerization reaction will be needed to characterize 
the rearrangement. 

Of particular interest here is the number of differenti- 
able permutational isomerization reactions in a totally 
symmetric environment. For molecules of the type 
MH2P4, Meakin, et a1.,7 have defined “equivalent basic 
sets” of permutations which consist of permutations 
that are indistinguishable by temperature-dependent 
nmr line-shape analysis. Generalizing their arguments, 
permutational isomerization reactions nondiff erentiable 
in a totally symmetric environment will yield identical 
temperature-dependent line shapes. By “identical” 
we mean of course identical to the order of approxima- 
tion implied by the “jump model” used to simulate 
nmr spectra of nonrigid systems. Therefore the number 
of permutational isomerization reactions differentiable 
in a totally symmetric environment is the maximuni 
number of permutational isomerization reactions which 
will lead to different temperature-dependent nmr line 
shapes. 

As was stressed in EPIR-I, assignment of a rearrange- 
ment reaction to a system of isomers does not 
specify a rearrangement mechanism, although i t  
does exclude certain mechanisms. However, if specific 
assumptions are made concerning the possible re- 
arrangement mechanisms, i t  may be possible to place 
the postulated mechanisms in a one-to-one corre- 
spondence with permutational isomerization reactions 
differentiable in a totally symmetric environment. 
The experimental temperature-dependent nmr line- 
shape behavior can then be compared to the simulated 
nmr spectra generated by the various differentiable 
reactions, and a mechanism may be assigned to the re- 
arrangement. The validity of such an assignment de- 
pends on the validity of the preliminary assumptions 
concerning the mechanism, while the feasibility of such 
an assignment of course depends on the complete 
resolution of experimental spectra and the correct 

(7)  P Meakin, E L Muetterties, F. N. Tebbe, and J P Jesson, J Amer 
Chem. Soc., 9S, 4701 (1971) 
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assignment of chemical shifts and coupling constants to  
the pertinent nuclei. 

In  the examples given below, results will be in- 
terpreted assuming a mechanism where the approxi- 
mately tetrahedral framework formed by the phos- 
phorus ligands may be distorted (or rotated) but not 
inverted during the course of the rearrangement re- 
action, while the hydride ligands may move from one 
face of the distorted tetrahedron to another. Such a 
mechanism, first proposed by Meakin, et ~ l . , ~  is called 
a "tetrahedral tunneling" mechanism. It may be 
expected to occur for molecules MH,P4 when M is small 
and P ligands are bulky. In  these cases the four P 
ligands should closely approximate a tetrahedron. 

All of the results given below could presumably be 
obtained by computer analysis,' but the present treat- 
ment provides a more inexpensive and convenient 
alternative. 

A. MHP4 M~lecules.-MH(PF~)~, M = Co, Rh, 
Ir, are molecules of this types (see Figure 1). Their 
structure can be described either as a distorted trigonal 
bipyramid with the H ligand occupying an axial position 
or a distorted tetrahedron formed by the P ligands with 
an H ligand occupying a tetrahedral face.1° In  either 
case, the point group of the skeletal framework is CaV. 
The group of allowed permutations is S4 + SI. The 
order of this group is only 4 !. 1 ! = 24 and the distin- 
guishable and differentiable permutational isomeriza- 
tion reactions may be obtained by inspection. The 
combinatorial formulas given in the Appendix will be 
employed, however, to illustrate the meaning and use 
of these formulas. 

First, the distinguishable permutational isomerization 
reactions in a chiral environment are enumerated using 
eq 6, which is obtained by letting R = C3 in eq 5. 

(6) 
F(C3; al, a2, a3, a4; bl) is calculated using eq A3, 
letting W- = C3, nl = 4 and n2 = 1. Consulting Table 
I, IC31 = 3. The first summation, 2v,t~a, extends over 
the three operations (1)(2)(3)(4)(5), (1)(234)(5), and 
(1)(243) (5). Each term in the summation is dependent 
only on the generalized cyclic type of r t .  Thus the 
terms corresponding to the last two operations will be 
identical. 

For the first term the generalized cyclic type (d,, 
d2, d3, d4; el) of rt = (1)(2)(3)(4)(5) is (4, 0, 0, 0 ;  1). 
This term is the product of two quantities: the first 
is determined by dl, dz, d3, d4;  the second is determined 
by el.  The calculation of each quantity follows the 
procedure used in EPIR-I. 

F d G ;  a1, az, a3, a4; bl) = F(C3; a1, az, a3, a4; bl) - 
Y(C3; ai, a2, a3, a4; bi) 

The first quantity is 

(8) P. Meakin, J.  P. Jesson, F .  N. Tebbe, and E. L. Muetterties, J .  
Amev. Chem. SOC., 93, 1797 (1971). For studies on other molecules of this 
type, see ref 9. 

(9) J. P. Jesson in "Transition Metal Hydrides," E. L. Muetterties, Ed., 
Marcel Dekker, New York, N. Y.,  1971, pp 173-178, and references therein. 

(10) B. A Frenz and J. A. Ibers, I m v g .  Chem., 9, 2403 (1970). For the 
structure of RhH[P(CsHs)s]r see R.  W. Baker and P. Pauling, Chem. Com- 
mun.,  1495 (1989). 

Here, the sum over the partitions ( P I ,  P z ,  p3, p4) of 
d ,  = 4 is taken in the order (4, 0, 0, 0 ) ,  ( 2 ,  1, 0, 0), 
(1, 0, 1, O ) ,  (0, 2 , 0 , 0 ) ,  (0, 0, 0, 1). The second quantity 
is given by eq 8. 

For the second term, the generalized cyclic type 
(d l ,  d2, d3, d4, el) of rt = (1)(234)(5) is (1, 0, 1, 0 ;  1). 
As above, this term is the product of two quantities: 
the first is determined by d l ,  dz, d3, d4 ;  the second is 
determined by el. Since el = 1 as before, the second 
quantity is giveh by eq 8. The first quantity is given 
by eq 9. 

4 dr n dC!P [m"--.p,!]-'* z-1x4(q)um;'g pm = 
1 = 1  ( P I  m = l  I: qll  1 

(all){ [a13 + 2 ~ 3 ~ 1 )  = a14 + ~ U I ' U ~ ~  (9) 

The All of this information is combined in eq 10. 

F(C3; al, az, a3, ad; b d  = l/3{ [a4 + 6 ~ 1 ~ ~ '  + 
8alW + 3az2 + 6 ~ ~ * 1 [ b 1 ~ 1  + 2[a14 + 2a11a311[b111) = 

Ul4bl1 + 2a12a21b11 + 4al1a3lb1' + az2b11 + 2a4%11 (10) 

result may be checked by calculating F(C3; 1, 1, 1, 1; 
1) using eq A7 and comparing this number with the 
sum (here, 10) of the coefficients in eq 10. 

Next, we calculate the second term on the right side 
of eq 6 using information given in Table I. 

TABLE I 
CON JUGACY CLASSES OF THE PERMUTATION GROUP GENERATED 

WHEN THE POINT GROUP CB OPERATES ON THE SKELETAL 
POSITIONS OF A MOLECULE MHP8 

Point group 
operation Induced permutation Generalized cyclic type 

E (1)(2)(3)(4)(5) (4 0 ,  0, 0 ;  1) 
ca (1 )(234) ( 5 )  (1, 0 ,  1, 0 ;  1) 
Ca -1 (1 ) (243)(5) (1, 0 ,  1, 0 ,  1) 

Skeletal positions are indexed as in Figure 1 .  

Y(c3; al, az, U s ,  a4; b1) = a14b11 + 2al1a3lb1' (11) 
Substituting eq 10 and 11 into eq 6, we obtain the 

isomerization counting polynomial for permutational 
isomerization reactions distinguishable in a chiral en- 
vironment. 

The corresponding polynomial for reactions distin - 
guishable in a totally symmetric environment, given 
in eq 13, may be generated in a similar fashion. 

mutational isomerization reactions distinguishable in a 
chiral and in a totally symmetric environment are 
easily generated. These sets are given in the first 
two columns of Table 11. 
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TABLE I1 

ISOMERIZATION REACTIONS OF MOLECULES MHPp 
DISTINGUISHABLE AND DIFFERENTIAL PERMUTATIONAL 

Distinguishable 
Distinguishable in a totally Differentiable Differentiable in a 

in a chiral symmetric in a chiral totally symmetric 
environment environment environment environment 

(1)(23)(4)(5) (1)(23)(4)(5) (1)(23)(4)(5) (1)(23)(4)(5) 

(123)(4)(5) (123)(4)(5) (123)(4)(5) (123)(4)(5) 
(132)(4)(5) 
(13)(24)(5) (13)(24)(5) 
(13)(2)(4)(5) (13)(2)(4)(5) (13)(2)(4)(5) 
(1243)(5) (1243 )(5) 
(1342)(5) 
a Skeletal positions are indexed as in Figure 1. In each column, 

a double line separates sets of reactions nondifferentiable in a 
totally symmetric environment, A single line then divides one 
of these sets into subsets of reactions nondifferentiable in a chiral 
environment. 

Using eq A8, the numbers of differentiable permuta- 
tional isomerization reactions in a chiral environment 
and in a totally symmetric environment are calculated 
as DICa = 3 and D’,,, = 2, respectively. In a totally 
symmetric or in a chiral environment, if two reactions 
are indistinguishable, then they are also nondiffer- 
entiable. By partitioning a complete set of distinguish- 
able reactions into subsets of nondiff erentiable reactions, 
a complete set of differentiable reactions can be obtained 
(see Table 11). In a totally symmetric environment, 
the distinguishable reactions p ,  and p ,  are nondifferen- 
tiable if p ,  and gk‘pj, &EG, are indistinguishable. In 
a chiral environment, the distinguishable reactions 
p ,  and p ,  are nondifferentiable if p ,  and r k , p 3 ,  rkcR, 
are indistinguishable. 

A set of two reactions differentiable in a totally 
symmetric environment is shown in Figure 3. Since 
(1)(23)(4)(5) is generated by a point group operation 
in CBO, this reaction cannot be detected by the nmr 
technique. Because DICa = 2, all permutational 
isomerization reactions not generated by point group 
operations will lead to identical temperature-dependent 
nmr line-shape simulations using the “jump model.’’ 
Thus virtually no mechanistic information may be 
inferred from temperature-dependent nmr line-shape 
analysis. 

The permutational isomerization reaction (123) (4) - 
(5) drawn in Figure 3 is implied by the “tetrahedral 
tunneling” mechanism: in the reactant isomer, the 
hydride ligand occupies the P3P2P4 face (trans to PI) 
and in the product the hydride ligand occupies the 
P1P2P4 face (trans to P3). Thus the “tetrahedral 
tunneling’’ mechanism will lead to temperature-de- 
pendent nmr line-shape behavior. 

Following the procedure used in this example, addi- 
tional formulas and tables may be derived for the re- 
maining examples B through D. 

B. MH2P4 Mole~ules.--FeH~[P(OC~H~)~]~~~~~ is one 
of many known molecules of this type having the cis 
configuration shown in Figure 1. This geometrical 
configuration can be described as either a distorted 
octahedron with cis H ligands or a distorted tetrahedron 
formed by P ligands with both H ligands occupying 

(11) For related molecules, see ref 9, pp 118-119, 180-189, and references 
therein. 

(12)  L. J. Guggenberger, D. D. Titus, M. T .  Flood, R.  E. Marsh, A. A.  
Orio, and H. B. Gray, J .  Ameu. Chem. Soc., 94,1135 (1972). 

\ 
p4 

‘ P4 

Figure 3.-Two permutational isomerization reactions of 
molecules MH2P4 differentiable in a totally symmetric environ- 
ment. Skeletal positions are indexed as in Figure 1. 

I 

’H5 

\ 
b3 

P 

p4 

p’ 

p4 

Figure 4.-Five permutational isomerization reactions of 
molecules MHzPa differentiable in a totally symmetric environ- 
ment. Skeletal positions are indexed as in Figure 1. 

tetrahedral faces.12 In either case, the point group 
symmetry of the skeletal framework is C Z , .  

Isomerization counting polynomials are given in 
eq 14 and 15. Also, Drcz = 15 and DIClr = 5 .  Sets 

F, (C2;  all a2, uJ3, ab; bl ,  b2)  = 4- 
~ C L I ’ C L ~ ~ ~ ~ ~  + 3a22b12 + 4aa1b12 + a14bz1 + 4u12a21b21 + 

4Ul’U31b21 + 2Uz2b2’ + (14) 
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TABLE 111 
DISTINGUISHABLE AND DIFFERENTIABLE PERMUTATIONAL ISOMERIZATION REACTIONS OF MOLECULES MH2Pda 

Distinguishable in a Differentiable in a 
Distinguishable in a totally symmetric Differentiable in a totally symmetric 
chiral environment environment chiral environment environment 

FI(C~V; ai, a2, '33, ' 3 4 ;  bi, b2) = 3ai2&'bi2 + 
2al'a31b12 + 2a22b12 + 2a4'b12 + a14b2' + 3a12a2'b2' + 

2Ul1a3'b2' + Uz2b2' f 2U4'bz' (15) 
of distinguishable and differentiable reactions are given 
in Table 111. Figure 4 shows five permutational 
isomerization reactions differentiable in a totally sym- 
metric environment. 

Assuming "tetrahedral tunneling," there exist four 
possible mechanistic types: (a) one hydride ligand 
moves to an unoccupied face and the other hydride 
ligand remains fixed, (b) both hydride ligands move to 
unoccupied faces, (c) the two hydride ligands are ex- 
changed, and (d) one hydride ligand moves to an unoc- 
cupied face while the other hydride ligand moves to 
the face previously occupied by the first hydride ligand. 
Consulting Figure 4, we see that mechanism a implies 
reaction (1) (234) (5) (6), b implies (13) (24) (5) (6), c 
implies (1)(2)(3)(4)(56), and d implies (123)(4)(5)(6). 
Therefore, these four mechanisms will in theory be 
detectable and differentiable by temperature-depen- 
dent nmr studies. 

C. MH3P4 Molecules.-As shown in Figure 1, the 
geometric configuration of these molecules may be de- 
scribed as a distorted tetrahedron of P ligands with H 
ligands occupying three faces. The compound ReH3- 
[P(CsH6)3]4 has been ~haracterized,'~ but detailed 
structural work has not been reported. Since the 

(13) L. Malatesta, M. Freni, and V. Valenti, Angem. Chem., 78,273 (1961). 

rhenium atom is quite large, one would not necessarily 
expect the structure to conform to the idealized struc- 
ture just mentioned. An analogous molecule with a 
first-row central metal atom would probably be amen- 
able to the present treatment. 

Isomerization counting polynomials are given in 
eq 16 and 17. Sets 

FI(C3; a', a2, a3, a4; b,, b2, 63) = 2a12a21b~3 + a h 3  + 
Also, Dfc8 = 19 and DtC8. = 7. 

4Ul'U31b13 + 2U4'bi3 + U14bl'b2' + 6~1~~2'61~b2' f 
3Q2b1'b2' + 8~1'~3'bl'b2' + 6a4'b11b2' + 2Ui4b3' + 

4a12aa'b31 + 2a2b3' + 6~1'~3'b3' + 4~4%' (16) 

FdC3,; a', a2, a3, a d ;  b ~ ,  b2, b3) = 2 ~ 1 ~ ~ 2 % ~  + ~ 2 % ~  + 
2a22b11b21 + 4a11a31b11b21 + 3U4'b1'b2' + a14b3' + 
2Ui'U3'bi3 + U4'bi3 + U14b1'bz' f 4a12a2'b1'bz' + 

2a12az'b31 f az2b3' + 3ai1U3'b3' f 2U4'b3l (17) 

of distinguishable and differentiable reactions are 
given in Table IV. Figure 5 shows seven permuta- 
tional isomerization reactions differentiable in a totally 
symmetric environment. 

"Tetrahedral tunneling" of hydride ligands leads to 
six different mechanistic types: (a) one hydride ligand 
moves to the unoccupied face, the other two remaining 
fixed, (b) one hydride ligand moves to the unoccupied 
face, a second hydride ligand moves to the previously 
occupied face, and the third hydride ligand remains 
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9' i' 

9' 

'p4 P4 

? 

Figure 5.-Seven permutational isomerization reactions of 
molecules MH3Pa differentiable in a totally symmetric environ- 
ment. 

fixed, (c) one hydride ligand remains fixed and the other 
two are permuted, (d) all three hydride ligands are 
cyclically permuted, (e) one hydride ligand moves to 
the unoccupied face and the other two hydride ligands 
are permuted, and ( f )  one hydride ligand moves to the 
unoccupied face, a second hydride ligand moves to 
the face previously occupied by the first hydride ligand, 
and the third hydride ligand moves to the face pre- 
viously occupied by the second hydride ligand. These 
mechanisms are easily related to permutational isom- 
erization reactions by identifying each "tetrahedral" 

Skeletal positions are indexed as in Figure 1. 

face with the phosphorus ligand trans to that face. 
For example, see (12)(34)(56)(7) shown in Figure 5. 
In the reactant isomer, Hj is on the face trans to P1, He 
is trans to Pz, and H7 is trans to Pa; in the product 
isomer, Hj is trans to PI, H6 is trans to Pz and H7 is trans 
to P4. Therefore, Hj  and H6 remain fixed while H7 has 
moved to the previously unoccupied face. Of course 
the tetrahedron of phosphorus atoms has not been in- 
verted. Inspecting the remaining reactions in Figure 5 ,  
we see that mechanism a implies reaction (12) (34) (56)- 
(7), b implies (1)(234)(5)(6)(7), c implies (1)(2)(3)- 
(4)(56)(7), d implies (132)(4)(5)(6)(7), e implies 
(12)(34)(5) (6) (7), andf implies (14) (23) (56) ( 7 ) .  There- 
fore all six mechanisms imply reactions which are theo- 
retically detectable and differentiable by temperature- 
dependent nmr studies. 

D. MH4P4.-LMolecules of this type which have 
been studied using the variable-temperature nmr tech- 
nique include MOH~[P(C~H~)~CH~]~,~~,~~ WH4 [P(C,- 
H ~ ) z C H ~ ] ~ ~ "  and WHI [P(CeHj) (CH3)2]4. Available 
experimental data are consistent with the T ,  symmetry 
of the idealized structure given in Figure 1, where hy- 
dride ligands occupy the faces of a tetrahedron formed 
by phosphorus ligands. NTe shall assume this sym- 
metry to be appropriate for some molecules of this 
type, in particular those with bulky phosphorus ligands 
and a small central metal atom. l4 

Isomerization counting polynomials are given in 
eq 18 and 19. Sets 

FdT;  al, a2, a3, ad; bl, b2, b3, b4) =' a1~b1'bz' + 
2a14b11b31 + al4bZ2 + aI4b4' + al2aZ1bl4 + 4al2az1bl2bz1 + 

4a12az'b11b31 + 3a12a21b22 + 4a12az1b41 + 2 ~ 1 ~ ~ 3 % ~ ~  + 
4a11a31b12b21 + 6a11a31b11b31 + 2al1a3'bZ2 + 

4a11a31b41 + a2?b14 + 3a22b12b21 + 2a22b11b31 + 
2a?Zb?2 + 3a2%4l + a4'bl4 + 4a41b12b2' + 4a4'b1'b3~ + 

Also, DIT = 11 and DrTd = 5 .  

3U4'bz2 f 4U4'b4' (18) 

F I ( T d ;  al, a2, a3, ad; bl ,  b2, b3, b4) = a ~ ~ b ~ ~ b r '  + 
a14b11b3' + a14b22 + a14b4' + alza21b14 + 3alzas'b12bz' + 

2a12a21b11b31 + 2al2az1bZ2 + 2a12az1b41 + al'a3'b14 + 
a2%14 + 2a?2b12b21 + a22b11b31 + a22b22 + 2as2b41 + 

a41b14 + 2a41b12b21 + 2a41b11b31 + 2ad1b2? + 
2al'a3'b12b2' + 3a1'a31bi'b31 + al'a31bs2 + 2Ul1a3'b4' + 

3a41b4' (19) 

of distinguishable and differentiable reactions are 
given in Table V. Figure 6 shows five permutational 
isomerization reactions differentiable in a totally sym- 
metric environment. 

Inspecting Figure 6, we notice that all the possible 
"tetrahedral tunneling" mechanisms imply permuta- 
tional isomerization reactions differentiable in a totally 
symmetric environment; ;.e., all four mechanisms imply 
reactions which are in theory detectable and differ- 
entiable by temperature-dependent nmr studies. 

Acknowledgments.-I am indebted to Dr. Bertram 
Frenz for helpful discussions concerning the structures 
of molecules treated in this paper. 

(14) J. P. Jesson, E. L. Muetterties, and P. Meakin, J. Ameu. Chem. SOC.  

(15) B. Bell, J. Cbatt, G. J .  Leigh, and T. Ito, J .  Chem. SOL. ,  Chem. COm- 
93, 5261 (1671). 

mun.,  34 (1672). 



PERMUTATIONAL ISOMERIZATION REACTIONS Inorganic Chemistry, Vol. 11, No. 11, 1972 2675 

TABLE IV 
DISTINGUISHABLE AND DIFFERENTIABLE PERMUTATIONAL ISOMERIZATION REACTIONS OF MOLECULES MHsPp 

Differentiable in a 
Distinguishable in a totally symmetric Differentiable in a totally symmetric 
chiral environment environment chiral environment environment 

Distinguishable in a 

(12)(3)(4)(56)(7) (12)(3)(4)(56)(7) (12)(3)(4)(56)(7) (12)(3)(4)(56)(7) 

(1234) (567) 

Appendix 
Two theorems are proved here. Theorem I provides 

a formula for calculating F(W; al, u2, . . . ,  unl;  bl, 
b2, . . . , b,J needed above in eq 4 and 5. Theorem I1 
provides a formula for calculating Dw needed for the 
calculation of D’R and DIG. First, however, the def- 
initions of cyclic type and cyclic index are generalized. 
Definitions of all other terms used below may be found 
in the Appendix of EPIR-I. 

A. Definititions.-Let H be a permutation group 

degree m acting on the set B ,  lBI = m. Assume that 
B is the disjoint union of the two sets B1 and B2, IB1/ 
= n1 and lB2l = n2. Assume further that every per- 
mutation h,eH permutes only elements of B1 among 
themselves and elements of B2 among themsleves. Then 
the generalized cyclic type of ht,tH is defined by ( j l ,  5, 
. . . , jn , ;  k1, 11.2, . . . , k,J where j ,  is the number of 
disjoint cycles in h, of length i which permute ele- 
ments in B1 and k ,  is the number of disjoint cycles in 
h ,  of length I which permute elements in B2. The 
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TABLE V 
DISTINGUISHABLE AND DIFFERENTIABLE PERMUTATIONAL ~SOMERIZATIOK REACTIOSS OF MOLECULES MH4Pa5 

Distinguishable in a 
chiral environment 

Distinguishable in a 
totally symmetric 

environment 
Differentiable in a 
chiral environment 

Differentiable in a 
totally symmetric 

environment 
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/'" P3 

'P4 

!3 

7 3  P 1  

3 p3 

73  

Figure 6.-Five permutational isomerization reactions of 
molecules MH3P4 differentiable in a totally symmetric environ- 
ment. Skeletal positions are indexed asin Figure 1. 

generalized cyclic index of H is defined by 

Z(H; al, . * . j aril; bl, bp, . . . j bnz) E 
a1%-d2. . . a,plblklbzkz. . . b,? (Al) 

In eq A l l  the summation extends over all operations 
h, in H, the j , 's  and kt's indicate the generalized cyclic 
type of each h, as defined above, and the at's and bt's 
are dummy variables. 

The concept of a generalized cyclic index was intro- 
duced by P61ya,16 formalized by Robinson, n and ex- 
tended further by de Bruijn.l* If H is the direct sum 
of HI and Hz, where HI acts on B1 and Hz acts on Bz,  
P61ya's19 reasoning demonstrates that eq A2 may 
be used to calculate the generalized cyclic index of H 
given the cyclic indices of HI and Hz. 

h,cH 

Z(Hi + Hz; ai, az, . . . , aril; bi, bz, . . . , bnJ = 

Z(H1; al, UZ, . * . j  an,)*Z(Hz; bl,  bz, . 9 ., bnz )  (A2) 
B. Theorem I. Theorem.-Let the symmetric 

permutation groups S,, and S,, act on the disjoint sets 
B1 and Bz, respectively, IB1l = nl, ~ B z (  = n2. The 
(16) G. Pblya, Acta Mathematica, 68, 145 (1937). 
(17) R. W. Robinson, J .  Combinatorial Theory, 4, 181 (1968). 
(18) N. G. de Bruijn, Nieuw Archief Wiskunde, ( 2 )  19, 89 (1971). 
(1s) Reference 16, pp 174, 177. 

group H E Sn, 4- Sn, acts on B,  the union of B1 and BZ. 
Wis an arbitrary subgroup of H. 

If Ajl,,. .  .,fnlklk,.. . . ,knZ is the number of conjugacy 
classes in H with respect to W of cyclic type ( j1 ,  j z ,  
. . . j n i ;  hi, Kz, . . , K n J  and 

F(W; ai, * * 9 ,  a n i ;  bi, bz, * ., bnJ E 

c A h h * ' * h 1 ~ k l ~ k z 9  ' * ask", x 
j h .  . . &; ki,kz,. . . ,knz 

a ~ f ~ a ~ f ~ .  . . a,plblk1b2kz. . . b,,lcn, 

the summation extending over all generalized cyclic 
types found in H, then 

F(W; ~ 1 ,  9 . ., a n i ;  bl, bz, 9 , bnJ = 

where (dl ,  dz, . . . , dn l ;  el, e2, . . . , e,,) is the generalized 
cyclic type of wteW; I I l , ln l  is the product over only 
those I, 1 I 1 I n ~ ,  for which d z  # 0 ;  I I u , l n 2  is the 
product over only those u, 1 5 u 5 n2, for which e,, # 0;  
2($) sums over the partitions (b1, p z ,  . . . ,  par )  of d,; 
and Z(t)  sums over all the partitions ( t l ,  tz, . . . , teU) of 
e,. All other symbols were defined in EPIR-I. 

Proof.-This proof is not presented in detail since 
its course parallels the proof of theorem I in EPIR-I. 

A permutation group n(W) acting on H is defined 
as in EPIR-I. Burnside's Lemma implies eq A4. 

- 
A f ~ h *  * *5n1?kikz* * *kn, - 

I WI -' xjm. * . inl , k J z  1 . 9 k , ,  [ T ( w t )  1 (A4) 
W,€W 

xlI5,. . . jnlklkz.  . . kn2 [n(wt)  ] is the number of h,eH of gen- 
eralized cyclic type (j1, jz, . . . , j n l ;  K1, Kz, . . . , K n z )  
which a(wt) leaves fixed. If (dl ,  dz, . . . , dnl;  el, e2, 
. . . ,  e,J is the generalized cyclic type of wi,  then 
xjlj2.. . f , , , k l k a . .  .k, ,[a(w~)] is the coefficient of u1%zjZ. . . 
an,lnlblklbZka. . . bnpknz in the expression 

In eq A5 the summation 21= extends over only those 
1, 1 5 1 5 nl, for which d l  # 0, and the summation 
2,- ln2 extends over only those u, 1 5 u 5 n2, for which 
e,  # 0. Consequently 

F(W; ai, az, . . . , a n l ;  bi, bz, . . . , b n J  = 
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the proof of theorem I in EPIR-I, eq A3 can be derived 
from eq A6. 

As in EPIR-I, eq A7 is of interest. 

F(W; 1, 1, , . ., 1; 1, 1, . . . ,  1) = 

C. Theorem 11. Theorem.-B1, Bz, H, B,  and W 
are defined as in theorem I. If Dw is the number of 
equivalency classes (double cosets Wh2W) generated 
in H when hr, hjeH are considered equivalent if hi = 
wk.hj.whfor some w k )  whew, then 

where sums over the generalized cyclic types (dl, dz, 
. . . , dn1; el> e2, . . . , e,J of operations in W and 

h d l d 2 .  . . d , , , e , e z .  . . e,,2 is the number of operations in W of gen- 
eralized cyclic type (dl, dl ,  . . . , dnl ;  el, e2, . . . , e , J .  

Proof.-This proof is not presented in detail since 
its course parallels the proof of theorem I1 in EPIR-I. 

The group Ww acting on elements in H is defined as 
in EPIR-I. Then Burnside’s Lemma implies 

where x(wi, wk) is the number of hi in H which satisfy 
eq A10 

M W d  = W l  (A10) 

Arguments used in EPIR-I show that eq A l l  will 
hold if w2 and wt are of the same cyclic type (dl, dz, 
. . . , dn,;  el, e2, . . . , e n J .  If w2 and wk are not of the 

same cyclic type, x(wt, w,) = 0. 
A1 1 are combined as in EPIR-I to yield eq A8. 

Equations A9 and 
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Polya’s theorem is restated in a manner which may lead to greater ease of isomer enumeration and aid in the formulation o f  
individual isomers. Several examples are treated. 

A restatement of Polya’s theorem in terms of in- 
variance to covering operations may lead to a greater 
ease of isomer enumeration and aid in the formulation 
of the structure of individual isomers. The restate- 
ment’ is as follows: the total number of (theoretically 
possible) stereoisomers of a molecule will be the number 
of distinguishable configurations of the molecule in a 
fixed coordinate system which are invariant under each 
operation of the rotational group (including the identity 
operation) divided by the total number of operations of 
the rotational group of the parent geometry. If the 
full covering group is used (;.e., improper rotations are 
included) the result is the number of geometric isomers. 

The distinguishable configurations invariant under 
the identity operation are simply the set of all dis- 
tinguishable configurations, ;.e., the number of permu- 
tations of the ligands taken one a t  a time. The num- 
ber of these depends only on the number of ligands of 
each type to be added and may be calculated from 

n!  
na !nb !n, ! . . . P l n  = 

(1) Although this restatement is essentially contained in one of Polya’s 
original papers (Ac ta  Mat. ( U p p s a l a ) ,  68, 145 (1937))  the implications and 
simplifications have been overlooked in the recent literature concerned with 
isomers. A partial summary in English of this paper of Polya appears in a 
chapter by Uhlenbeck and Ford in “Studies in Statistical Mechanics,” Val. 
I ,  J. DeBoer and G. E.  Uhlenbeck, Ed., Interscience, New York, N. Y. 
(North-Holland Publishing Co., Amsterdam), 1962. 

where n is the total number of ligands, n, is the number 
of A groups, If only 
one ligand of each type is present (n, = nb = n, = . . . 
1) then PIn = n!  and the total isomers possible will be 
n ! /h  where h is the order of the rotational group. This 
leads to the well-known (at least for the first few mem- 
bers) results shown in Table I. 

the number of B groups, etc. 
- - 

TABLE I 
MAXIMUM NUMBER OF STEREOISOMERS FOR A 

GIVEN PARENT GEOMETRY” 

Geometry and 
Coordin no rotational group No of isomers 

4 Tetrahedron T 4!/12 = 2 
Sq plane D4 

Boat DZ 

4!/8 = 3 
4!/4 = 6 
4!/4 = 6 

5 Trigonal bipyr D3 5!/6 = 20 
5!/4 = 30 

sq PYr c4 

sq PYr c4 
Pentagon Cg 5!/10 = 12 
Octahedron 0 6!/24 = 30 

12 Icosahedron I 12!/60 = 7,983,360 
Q Maximum achieved only when all ligands are different; planar 

geometries yield optically inactive isomers, and others give n/2 
enantiomorphic pairs. 

6 

In  order for a configuration to be invariant under a 
C, operation, any ligands which do not fall on the C, 
axis must be in sets of n similar ligands. Groups falling 
on the C, axis belong to “sets of one.” Each C, opera- 




